
web frameworks
design comparison

draft - please help me improve it
focus on Model-View-Controller frameworks



Controllers

class MyTestController < ApplicationController
   def index
      render_text “Hello World”
   end
end

The name of the class has to match the name of the controller file.

In Rails



Controllers

from django.http import HttpResponse

def index(request):
    return HttpResponse("Hello World”)

Django is explicit, you need to import all functions you use.

In Django



Controllers

import cherrypy 
  
class MyRoot: 
  
@cherrypy.expose() 
def index(self): 
     return "Hello World" 

Cherrypy, Turbogears, and Pylons are also explicit. You need to import 
all functions you want to use.

In Cherrypy and TurboGears 1.0



Controllers

def index(): 
     return "Hello World" 

In web2py

web2py is similar to Rails. It imports for you all the web2py keyword. 
Often, like in this case, you do not need any.



Get/Post requests

class MyTestController < ApplicationController
   def index
      render_text “Hello ”+params[:who]
   end
end

GET and POST variables are passed via params but other request 
parameters (client ip for example) are passed via a different 
mechanism.  

In Rails



Get/Post requests

from django.http import HttpResponse

def index(request):
    return HttpResponse("Hello World %s” % \
           request.REQUEST[‘who’])

Nice, simple. The request contains all the info. You can use .GET 
or .POST instead of .REQUEST to be more specific.

In Django



Get/Post requests

import cherrypy 
  
class MyRoot: 
  
@cherrypy.expose() 
def index(self,who): 
     return "Hello %s" % who 

GET and POST variables are passed via arguments of the action, but 
other request parameters (client ip for example) are passed via a 
different mechanism.  

In Cherrypy and TurboGears 1.0



Get/Post requests

def index(): 
     return "Hello %s" % request.vars.who 

Similar to Django. All request data is in one place. You can 
use .get_vars and .post_vars instead of .vars to be more specific.

In web2py



Dispatching

class MyTestController < ApplicationController
   def index
      render_text “Hello World”
   end
end

By default Rails does not allow running multiple apps without running 
multiple copies of Rails, since the name of the app is not in the URL, 
only the controller name (MyTest) and the action name (index) appear. 

This can be changed by configuring routes. 

In Rails URL http://hostname/MyTest/index gets mapped into

http://hostname/MyTest/index
http://hostname/MyTest/index


Dispatching

from django.conf.urls.defaults import *

urlpatterns = patterns('',
     (r'^index$', myapp.mycontroller.index),
)

This is the equivalent of Rails’ routes and it requires using regular 
expressions.

There is no default. You need one entry in url.py for every action.

In Django you need to edit url.py to map URLs into actions



Dispatching

import cherrypy 
  
class MyRoot: 
  
@cherrypy.expose() 
def index(self,who): 
     return "Hello %s" % who 

Works very much like Rails and default mapping between URL and 
action can be overwritten.

In Cherrypy and TurboGears 1.0



Dispatching

def index(): 
     return "Hello %s" % request.vars.who 

Similar to Rails and Charrypy but, by default the URL requires that you 
specify the name of the app. This allows web2py to run multiple apps 
without using routes.

Web2py has its own version of routes that supports two different 
syntaxes (with and without regular expression) to overwrite the mapping 
and reverse mapping as well.

In web2py a URL like http://hostname/myapp/mycontroller/index calls

http://hostname/myapp/mycontroller/index
http://hostname/myapp/mycontroller/index


Calling Views

class MyTestController < ApplicationController
   def index
      @message=“Hello World”
   end
end

It calls the default view (MyTest/index) which renders the page. The 
variables marked by @ are global vars and are passed to the view.

Notice that if the view is not defined, this results in an error message.

In Rails



Calling Views

from django.shortcuts import render_to_response

def index(request):
    return render_to_response("index.html”,
           {‘message’:’Hello World’})

This is the short way of doing it in Django. You have to specify the view 
name “index.html” since there is no default. Parameters are passed via 
a dictionary.

You get an error message if the view is not defined.

Notice that in Django a view is called a template and a controller is 
called a view.

In Django



Calling Views

import turbogears
from turbogears import controllers, expose 
  
class MyRoot(controllers.RootController): 
  
@expose(template="MyApp.MyRoot.index") 
def index(self): 
     return dict(message=”Hello World”)

The view is specified in the expose decorator.

In TurboGears 1.0 with Cherrypy



Calling Views

def index(): 
     return dict(message=”Hello World”)

The last line works like Cherrypy but by default it looks for a view called 
“mycontroller/index.html” in “myapp”. If this view does not exist it uses a 
generic view to show all variables returned in the dictionary.

The default can be overwritten with response.view=’filename.html’

In web2py



Views

<table>
 <% @recipes.each do |recipe| %>
  <tr>
   <td><%= recipe.name %></td>
  </tr>
 <% end %>
</table>

It allows full Ruby in views but:

- it does not escape strings by default (unsafe)

- <% %> requires a special editor since < > are special in HTML

In Rails



Views

<table>
{% for recipe in recipes %}
   <tr>
     <td>{{recipe.name}}</td>
   </tr>
{% endfor %} 
</table>

The choice of {% %} and {{ }} tags is good because any HTML editor 
can deal with them.

The code looks like Python code but it is not (notice the “endfor” which 
is not a python keyword. This limits what you can do in views.

In Django



Views

<html xmlns="http://www.w3.org/1999/xhtml"
      xmlns:py="http://purl.org/kid/ns#">
...
<table>
   <tr py:for="recipe in recipes" >
      <td py:content=”recipe.name”>
      </td>
   </tr>
</table>

This allows full Python quotes py:for=”...” but it can only be used to 
generate HTML/XML views, not dynamical JavaScript for example.

Kid or Genshi in TurboGears 1.0 or Cherrypy

http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml
http://purl.org/kid/ns#
http://purl.org/kid/ns#


Views

<table>
 {{for recipe in recipes:}}>
  <tr>
   <td>{{=recipe.name}}</td>
  </tr>
 {{pass}}
</table>

Similar to Django but full Python in the code (notice “pass” is a Python 
keyword) without indentation requirements (web2py indents the code for 
you at runtime). Only one type of escape sequence {{ }} which is 
transparent to all HTML editors. All string are escaped (unless otherwise 
specified, like in Django and Kid). It can be used to generate JavaScript 
(like Django and Rails).

In web2py



Escaping in Views

<%%= message>

The double %% indicate the text has to be escaped. This is off by 
default, hence unsafe. Should be the opposite. 

In Rails



Escaping in Views

{% filter safe %}
   {{ message }}
{% endfilter %}

Since Django 1.0 all text is escaped by default. You mark it as safe if 
you do not want it to be escaped.

In Django



Escaping in Views

<div py:content=”XML(recipe.name)”></div>

Text is escaped by default. If text should not be escaped it has to be 
marked with XML

Kid or Genshi in TurboGears 1.0 or Cherrypy



Escaping in Views

{{=XML(recipe.name,sanitize=False)}}

Text is escaped by default. If text should not be escaped it has to be 
marked with XML. The optional sanitize option perform XML sanitization 
by selective escaping some tags and not others. Which tags have to be 
escaped and which tag attributes can be specified via arguments of 
XML.

In web2py



Views Hierarchy

<title>Layout Example</title>
  <body>
    <%= yield %>
  </body>
</html>

and in controller:
render :layout=’filename.html.erb’

The rendered page is inserted in the <%= yield %> tag in the layout.

One can include other views with <%= render ... %>

Notice that also :layout follow a naming convention and there is a 
default.

In Rails



Views Hierarchy

<title>Layout Example</title>
  </head>
  <body>
    {% block main %} {% endblock %}
  </body>
</html>

and in view:
{%block main%}body{%endblock%}

In Django

Views can be extended and included using blocks that have names.



Views Hierarchy

<html xmlns="http://www.w3.org/1999/xhtml"
      xmlns:py="http://purl.org/kid/ns#"
            py:extends="'master.kid'">
...

Kid or Genshi in TurboGears 1.0 or Cherrypy

http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml
http://purl.org/kid/ns#
http://purl.org/kid/ns#


Views Hierarchy

Notation similar to Rails but called like in Kid. The body replaces 
{{include}} in the layout. layouts can extend other layouts. Views can 
include other views.

In web2py

<title>Layout Example</title>
  <body>
    {{include}}
  </body>
</html>

and in view:
{{extend ‘layout.html’}}
body



Forms

  <%= form_tag :action => "update" dp %>
   Name: <%= text_field "item", "name" %><br />
   Value: <%= text_field "item", "value" %><br />
   <%= submit_tag %>
  <%= end %>

Rails has helpers to create forms but that’s it. As far as I know there is 
no standard mechanism to automatically create forms from models 
(database tables). Perhaps there are Rails add-on to do this.

There is a mechanism to validate submitted forms.

In Rails



Forms

# in model
class ArticleForm(ModelForm):
     class Meta:
         model = Article
# in controller
def contact(request):
    if request.method == 'POST':
        form = ContactForm(request.POST)
        if form.is_valid():
            return HttpResponseRedirect('/thanks/')
    else:
        form = ContactForm() # An unbound form
    return render_to_response('contact.html', {
        'form': form,})

In Django

In Django, you can create a Form (ArticleForm) from a model (Article).

The Form knows how to serialize itself and validate the input on self-
submission, but the errors are not automatically inserted in the form.



Forms

?

I believe you need to use a library like ToscaWidgets. Sorry, I am not 
familiar with them. If you know how to fill this page please let me know.

Kid or Genshi in TurboGears 1.0 or Cherrypy



Forms

This is the same as the previous Django form (generated from the 
Article) model, except that when the form is serialized, if there are 
errors, they are displayed in the form itself (unless specified otherwise).

Web2py forms can also prevent double submission.

In web2py

def contact(request):
    form = SQLFORM(Article)
    if form.accepts(request.vars): 
        redirect('thanks')
    return dict(form=form)



Validation

ActiveForm::Definition::create :article do |f|
 f.section :details do |s|
 s.text_element :email,:class => 'required' do |e|
   e.validates_as_email :msg => 'not email'
 end
end

Rails defines validators like requires, email, etc. You can associate 
validators to a form. In your controllers you need to check if a form is 
valid, and, on error, alter the page to include the errors generated by 
validation.

In Rails



Validation

from django.core.validators import *

class Article(models.Model):
    email = models.EmailField(
      validator_list=[isValidEmail])

In Django

Very much like Rails but more validators. Validators are specified in 
models and/or forms.



Validation

Similar to Django and Rails because validators are attached to table 
fields and form fields but validators are classes  not objects. This means 
they must be instantiated with (). You can pass arguments to the 
validators to change their behavior (for example the error message).

The presence of validators affects the way a field is rendered in a form. 
For example IS_IN_SET() renders the field with a dropbox.

In web2py

db.define_table(‘Article’,SQLField(‘email’))

db.Article.email.requires=IS_EMAIL()



Models and Migrations

class Article < ActiveRecord::Migration
  def self.up
     create_table :articles do |t|
       t.column :name, :string
       t.column :description, :text
     end
  end
end

In Rails there is a place to define tables that need to be created/deleted/
altered (migrations) and a different place to establish relations between 
tables (one to many, many to many, etc)

In Rails



Models and Migrations

class Article(models.Model):
    name = models.StringField()
    description = models.TextField()

In Django

In Django there is one place where models are defined. If the tables do 
not exist they are created. Django does not do migrations (i.e. it does 
not alter or drop tables if the models change). For many to many 
relations, it creates the intermediate link table for you.



Models and Migrations
from turbogears.database import metadata, mapper
  sqlalchemy 
import Table, Column, Integer

mytable = Table('mytable', metadata,
    Column('id', Integer, primary_key=True))

class MyTable(object): pass

mapper(MyTable, mytable)

In SQLAlchemy (used in TG and Pylons)

SQLAlchemy makes a distinction between what tables are in the 
database and how they are mapped into Python objects. This is 
because SQLAchemy can deal with legacy databases. Rails, Django 
and web2py can but with limitations (in the case of web2py for example, 
tables must have an integer auto-increment key field called “id”).



Models and Migrations

The syntax is a little different but the functionality is similar to Rails. If 
the the table in the model above does not exist it is created. If the model 
changes, web2py alters the table accordingly. One to many ad many to 
many relations are implied by reference fields.

In web2py

Article=db.define_table(‘Article’,
           SQLField(‘email’,’string’),
           SQLField(‘description’,’text’)



Select Query

Article.find(:first,:conditions => [
   "id > :id AND name = :name",
        {:id => 3,      :name => "test" }])

This is the most common notation for a select. The conditions argument 
is basically a SQL statement but the parameters are passed as 
additional arguments.

In Rails



Select Query

Article.objects.filter(id__gt=3,name=’test’)

In Django

“id__gt=3” reads “id greater than 3”.

Django queries are lazy-evaluated.



Select Query

query(Article).filter_by(id>3, name=’test’)

In SQLAlchemy (used in TG and Pylons)



Select Query
In web2py

db(Article.id>3 and Article.name==’test’).select()

In web2py you always need to specify which db you are acting on 
because you can have multiple db connections in the same code.



Transcations

class MyTestController < ApplicationController
   def index
      Record.transaction do
         ...
      end
   end
end

In Rails



Transactions

from django.http import HttpResponse
from django.db import transaction

@transaction.commit_on_success
def index(request):
    ...
    return HttpResponse("Hello World”)

In Django

There are multiple decorators: autocommit (commits always), 
commit_on_success (commit only if not Exception), commit_manually 
(requires calling) transaction.commit() or transaction.rollback()



Transactions

import turbogears
from turbogears import controllers, expose 
  
class MyRoot(controllers.RootController): 
  
@expose(template="MyApp.MyRoot.index") 
def index(self): 
     ...
     return dict(message=”Hello World”)

In TurboGears

By default all actions are enclosed in a transaction that commits on 
success and rollsback on exception.



Transactions
In web2py

def index()
    ...
    return dict(message=”Hello World”)

By default all actions are enclosed in a transaction that commits on 
success and rollsback on exception.



Internationalization

Rails currently doesn’t offer any explicit support for 
internationalization. Perhaps it should, perhaps it’s too app specific to 
generalize.

http://wiki.rubyonrails.org/rails/pages/Internationalization

In Rails

Thinks will change in Rails 2.2 but here we talk about present, not 
future.

http://wiki.rubyonrails.org/rails/pages/Internationalization
http://wiki.rubyonrails.org/rails/pages/Internationalization
http://wiki.rubyonrails.org/rails/pages/Internationalization
http://wiki.rubyonrails.org/rails/pages/Internationalization
http://wiki.rubyonrails.org/rails/pages/Internationalization
http://wiki.rubyonrails.org/rails/pages/Internationalization
http://wiki.rubyonrails.org/rails/pages/Internationalization
http://wiki.rubyonrails.org/rails/pages/Internationalization
http://wiki.rubyonrails.org/rails/pages/Internationalization
http://wiki.rubyonrails.org/rails/pages/Internationalization


Internationalization

from django.http import HttpResponse
from django.utils.translation import ugettext as _

def my_view(request):
    message = _("Hello World")
    return HttpResponse(message)

In Django

Using ‘_’ is the common convention.

Requires a few shell commands to build and edit the dictionaries.



Internationalization

import turbogears
from turbogears import controllers, expose 
  
class MyRoot(controllers.RootController): 
  
@expose(template="MyApp.MyRoot.index") 
def index(self): 
     message=_(“Hello World”)
     return dict(message=message)

In TurboGears

As in the case of Django, this requires some shell commands to build 
and edit the dictionaries. 



web2py
vs

Other Web Frameworks



Other Web 
Frameworks?

• j2ee

• PHP

• CakePHP

• Django

• Pylons

• Ruby on Rails (RoR)



Who’s not in the list?

• TurboGears (because TG2 is not that 
different from Pylons+SQLAlchemy
+Genshi)

• web.py, werkzeug, karrigell, psp, etc. (all 
excellent frameworks with their 
functionalities are too limited for a fair 
comparison)

http://web.py
http://web.py


Who’s not in the list?

• Cherrypy (the cherrypy wsgiserver is 
included in web2py)

• j2ee (there are too many to choose)

• Zope (sorry, I do not understand Zope)



Underlying Language
web2py python

j2ee  java

PHP syntax draws upon C, Java, and Perl

CakePHP php

Django python

Pylons python

RoR ruby



Model View Controller
web2py yes

j2ee yes
PHP no

CakePHP yes
Django yes
Pylons yes
RoR yes



Model View Controller

• in web2py, given a model, the default 
controller appadmin.py provides a database 
administrative interface (each app has its 
own)

• in web2py, every controller function, by 
default, has a generic view



Model View Controller



Web Based Interface
web2py yes

j2ee no
PHP no

CakePHP no
Django no Django has a database administrative interface only not not an app 

development/management administrative interface like web2py.

Pylons no
RoR no only at Heroku.com which, anyway, is very limited

compared to the web2py one.



Web Based Interface

• The web2py web based administrative 
interface allows you to do development, 
debugging, testing, deployment, 
maintenance, and database administration.

• The use of the web based interface is 
“optional” and not required. The same 
functionality can be accessed via the Python 
shell.



Web Based Interface



Web Based Interface



Web Based Database 
Administrative Interface

web2py yes one for every app

j2ee no via third party application

PHP no via third party application

CakePHP no via third party application

Django yes
Pylons no via third party application

RoR no via third party application



Generic CRUD 
helpers/controllers

web2py yes
j2ee no
PHP no

CakePHP yes
Django yes
Pylons no
RoR yes



upload forms

• Only web2py and Django have a standard 
mechanism to handle file upload and secure 
storage. 

• In case of the web2py the uploaded file is 
securely renamed, stored on disk and the 
name is store in the database. Upload is 
always done via streaming in order to 
handle large files.



Byte Code Compilation
web2py yes there is a button [compile all]

it compiles models, controllers and views

j2ee yes
PHP no

CakePHP no
Django yes it is always possible to bytecode compile python 

code, usually not the views/templates, but this is
not as trivial as clicking on one buttonPylons yes

RoR no



Byte Code Compilation

• web2py and j2ee are the only frameworks 
that allow to byte code compile 
applications and distribute them in closed 
source.



Ticketing System
web2py yes

j2ee no
PHP no

CakePHP no
Django no can be configured to send you 

an email in case of error

Pylons no can be configured to send you 
an email in case of error

RoR no



Ticketing System

• web2py has not distinction between 
debugging and production modes. All 
uncaught exceptions are logged and a ticket 
is issued to the visitor in order to recover 
the associated log.

• Administrator can browse and read logs via 
the administrative interface



Zero Installation
web2py yes

j2ee no
PHP no

CakePHP no
Django no
Pylons no
RoR no



Zero Installation

• The binary distributions of web2py (for 
Windows and Mac) package the 
interpreter, the SQLite database and the 
administrative interface.

• They require no installation and can run off 
a USB drive.



Zero Configuration
web2py yes

j2ee no
PHP no

CakePHP no
Django no
Pylons no
RoR no



Zero Configuration

• web2py has no configuration file at the 
framework level. This ensures an easy setup 
and portability of applications.  All other 
frameworks require some type of 
configuration.

• web2py applications can have configuration 
files.



Web Based Model Designer
web2py yes on web page

j2ee no
PHP no

CakePHP no
Django no
Pylons yes via CatWalk (SQLObjects only?)

RoR no



Web Based Model Designer



Web Based Testing
web2py yes as web interface to DocTests

j2ee no
PHP no

CakePHP no
Django no
Pylons no
RoR no



Web Based Testing



Runs on Google App Engine
web2py yes with some limitations

j2ee no
PHP no

CakePHP no
Django yes but not the ORM
Pylons yes but not all its components
RoR no



• web2py is the only framework that allows 
to develop on your own platform and then 
run the app, unmodified on the Google App 
Engine (with the limitations imposed by the 
App Engine).

• No need to rewrite the model since the 
web2py database abstraction layer supports 
the Google Query Language.

Runs on Google App Engine



Caching
web2py yes for any function, you can specify whether to cache 

in ram, on disk, with memcache, or combinations.

j2ee yes with third party components

PHP yes memcache

CakePHP yes memcache

Django yes ram, disk, db, memcache

Pylons yes ram, disk, db, memcache

RoR yes memcache



Native Template Language
web2py yes 100% Python with no indentation need

j2ee yes most common are XML or JSP

PHP yes PHP is itself a template language

CakePHP yes PHP

Django yes Django Template Language

Pylons yes Kid, Genshi, Mako, Cheetah, etc.

RoR yes Ruby



• Any Python Framework can use any 
Python-based Template Language (for 
example web2py can use Genshi, Pylons 
can use web2py’s).

• The native web2py template language 
consists of pure code embedded in {{ }} 
tags inside HTML. Blocks end with “pass”, 
so no indentation requirements.

Native Template Language



• web2py View Example:
<html><body>

{{for i in range(10):}}

<b>Hello number {{=i}}</b><br/>

{{pass}}

</body></html>

Template Language



Template Extension
web2py yes

j2ee yes
PHP yes

CakePHP yes
Django yes
Pylons yes
RoR yes



• web2py Example:
{{extend ‘layout.html’}}

<h1>Hello world</h1>

{{include ‘sidebar.html’}}

Template Extension



HTML Helpers
web2py yes

j2ee no
PHP no

CakePHP yes
Django yes
Pylons yes
RoR yes



Internationalization
web2py yes

j2ee no
PHP no

CakePHP yes
Django yes
Pylons yes
RoR no



• In web2py, text is marked for translation 
using T(“hello world”).

• Translations are edited via the provided 
administrative interface.

• It is possible to have variables in 
translations like in
T(“Hello %(name)s”,dict(name=”Massimo”))

Internationalization



Database Abstraction
web2py yes

j2ee no limited to JavaBeans

PHP no PearDB does not count because because it requires the developer
to write SQL queries and has no Object Relational Mapper

CakePHP no
Django yes
Pylons yes via SQLAlchemy or SQLObjects

RoR yes via ActiveRecords



• The web2py ORM works seamlessly with 
SQLite, MySQL, PostgreSQL, Oracle and  
on the Google App Engine (with the 
limitations imposed by the Google system)

Database Abstraction



• web2py example
rows=db(db.user.birthday.year()>1950).select()

• equivalent Django example
rows=User.objects.filter(birthday__year__gt=1950)

Database Abstraction



Left Outer Joins
web2py yes

j2ee  n/a because no ORM

PHP n/a because no ORM

CakePHP n/a because no ORM

Django yes requires a custom Q object

Pylons yes with SQLAlchemy, no with SQLObjects

RoR yes



• All the Python ORMs have the ability to 
execute raw SQL therefore they allow 
allow LEFT OUTER JOIN although not in a 
SQL-dialect independent way

Left Outer Joins



Automatic Migrations
web2py yes

j2ee no
PHP no

CakePHP no
Django no
Pylons yes
RoR yes



• In web2py if one changes the data model, it 
automatically and transparently generates 
and executes SQL to ALTER TABLEs.  There 
is no special command to type like in Rails.

Automatic Migrations



Multiple Databases
web2py yes

j2ee yes
PHP yes

CakePHP yes
Django no but there is a branch that allows it

Pylons yes
RoR ?



• In web2py table objects are attributes of a 
database connection therefore there is no 
conflict if one establishes multiple 
connections.

• In other framework tables are represented 
by classes and there may be conflicts if two 
databases have tables with same name.

Multiple Databases



Distributed Transactions
web2py yes with PostgreSQL only

j2ee yes
PHP no

CakePHP no
Django no
Pylons no
RoR no



CRUD methods
web2py yes

j2ee no via third party plugin

PHP no via third party plugin

CakePHP yes
Django yes
Pylons no
RoR yes



Blocks SQL Injections
web2py yes

j2ee no
up to the programmer 
to write secure codePHP no

CakePHP no
Django yes
Pylons yes
RoR yes



Blocks Double Submit
web2py yes

j2ee no
PHP no

CakePHP no
Django no
Pylons no
RoR no



• web2py provides methods to generate 
forms form database tables and 
automatically validates and processes forms 
on submission. It also injects a one-time 
token in each form to prevent double form 
submission and some reply attacks.

Blocks Double Submit



xmlrpc services
web2py yes

j2ee yes
PHP no

CakePHP no
Django no
Pylons yes
RoR no



Included Ajax Library
web2py yes jQuery

j2ee no
PHP no

CakePHP yes jQuery
Django no
Pylons no
RoR yes Scriptaculous



• Any of the frameworks can use any third 
party Ajax libraries, here we are concerned 
with server-side programming only.

Included Ajax Library



JSON support
web2py yes simplejson is included

j2ee yes
PHP yes

CakePHP yes
Django yes simplejson is included
Pylons yes simplejson is included
RoR yes



File Streaming
web2py yes by default for all static large files

j2ee yes

not by default

PHP yes
CakePHP yes
Django yes
Pylons yes
RoR yes



IF_MODIFIED_SINCE
web2py yes by default

j2ee no

not out of the box
rely on web server for static content,

requires programming otherwise

PHP no
CakePHP no
Django no
Pylons yes
RoR no



206 PARTIAL CONTENT
web2py yes by default

j2ee no

not out of the box
rely on web server for static content,

requires programming
otherwise

PHP no
CakePHP no
Django no
Pylons yes
RoR no



• web2py is wsgi compliant.

• comes with the cherrypy wsgi fast and ssl-
enbled web server.

• runs with apache and mod_proxy or 
mod_rewrite or mod_wsgi.

• runs with lightpd with FastCGI.

• runs as CGI script.

Handlers for Web Servers



Routes
web2py yes including reversed, with or without regex

allows IP filtering

j2ee no delegated to web server

PHP no delegated to web server

CakePHP yes no reversed, no IP filter

Django yes uses regex, no reversed routes, no IP filter

Pylons yes similar to rails

RoR yes reversed routes? no IP filter



• In web2py routes are “optional” and there 
is a default mapping between URLs and 
controllers (similar to Rails).

• IP filter is a web2py feature that allows to 
map URLs into controllers in a way that 
depends on the visitor IP pattern. In this 
way different visitors see different pages 
but the same URL.

Routes



Documentation
web2py 120 pages draft manual online, one book

j2ee too many published books

PHP many published books

CakePHP online examples only

Django three books

Pylons online examples only

RoR many published books



• Most of the frameworks, including web2py, 
have extensive online documentation

• Web2py also has a repository of free plug-
in applications including wikis, blogs, a chat 
line, an online store, log analyzer, and more.

Documentation



• http://mdp.cti.depaul.edu

• FAQ: http://mdp.cti.depaul.edu/AlterEgo

• Free Apps: http://mdp.cti.depaul.edu/appliances

Links to web2py

http://mdp.cti.depaul.edu/AlterEgo
http://mdp.cti.depaul.edu/AlterEgo

